Gebraucht ASML Twinscan XT 1250D #9238020 zu verkaufen

Es sieht so aus, als ob dieser Artikel bereits verkauft wurde. Überprüfen Sie ähnliche Produkte unten oder kontaktieren Sie uns und unser erfahrenes Team wird es für Sie finden.

ID: 9238020
Wafergröße: 12"
Weinlese: 2004
ArF Scanner, 12" Track pre-warning signal: APR Input / Output conflicts No closing disk type Type of wafer table on chuck 1 and 2: Zerodur Wafer stage: Type 2 Wafer carrier location: Right (25) Wafers per carriers Wafer stage types: Dual chuck Lower docking plates WS Balance mass: Stainless steel WH Robot power amplifier: CPM 20 Wafer stage fast stiff X move electronics Wafer stage mirror block down electronics UNIVERSAL Pre-alignment Interferometer axis version at exposure: 3 Plus, 1 Axis Dedicated wafer handling pneumatic Chuck 1 and 2, 12" Specifies chuck 1 and 2 config: Dry Docking wheels at WH unload Docking plate height: Low Carrier handler type: Mark I 300 Foup Wafer handling load: Double fold arm, 12 mm Unload robot type: Z Stroke Wafer handler WRT BF shifted in Z: Not shifted No enhancements in reticle monitor Encoders measurement system: Hall sensors for zeroing Reticle stage chuck type: Glued leaf spring: Type 2: Glued LS, Pneumatic GC, IFM / ENC Reticle carrier location: Right Integrated reticle inspection system: PPD1 With IRIS1 Integrated reticle library: IRL Reticle, 6" Reticle carrier tag reader Reticle stage long stroke motor type: Cobalt ferro 18 teeth Reticle stage long stroke config type 3: CoFe-18 Motor SB Controller Vacuum supply Pneum GC Reticle stage: Lens cooler box with anti-aliasing filter Maximum reticle ID length: 24 Characters Reticle stage measurement system on scan: HEIDENHAIN Encoder Relative direction of WS to RS on the X axis RS Object field Reticle exchange type: Retex E option Reticle handler type: Original Integrated reticle inspection system Dynamic performance calculation: Mark 1 Stages sample rate: 5.0 kHz Interferometer electronic Capacitive Z-height sensor type: Dual Z sensor board IFM Config at measure side: 8-Axes Dose system performance test sequence: Test sequence 1 PEP-ADC Intensity: Disable PEP-ADC intensity Online lamp peak Dose intensity optimization Laser gas life extension Depolarizer type: Fixed depolarizer Intensity calibration per DOE Pupil qualification method: Centre of gravity method Unpolarized illumination amorph DOE Fresnel corrections for WSSS IS NA Accuracy measurement allowed No exchangeable pupil lens element No sigma calibration No sigma WIP preserving offset THFFC FDE Model lens dependent Determination of NA ellipticity XML Output for lithoguide Validity range: Exact matching for UIP data Active element: ALE No polarization shaping element retractor hardware BMU Reading: DOE1 Plane Lens type: 12 Light-source architecture: Laser Light-source type: CYMER XLA 165 Laser Light-source wave-length: 193 nm Dose mapper REMA Architecture: REMA C Illuminator type: 120 Zoom AXICON architecture: ZZA / 120 Automated DOE exchanger / Architecture: 5 Slots MIP control UNICOM / Architecture: Motor Imaging electronics architecture: B Architecture Attenuator type Dose mapper 1 Test table Z-axis: Worm wheel PUPICOM / Architecture: DC Motor with gearbox (5) Z Lens manipulators Active lens element Active element (4) Semi-active X-Y lens manipulators Setup sensor board Imaging generic power amplifier Imaging control rack configuration Projection multiplexer board LEC Rack in electronic architecture Projection GPA configuration (5) Lens NEXZ Manipulators Spot sensor surface coating: Bilatal Energy sensor: VLOC Spot sensor chuck 1 and 2: VLOC Uniformity improvement package Pupil measurements with ILIAS Beam control: Beam adjustment Extended spot sensor matching (5) Rxms / (5) Ryms Exchangeable last lens element UV Shutter Dose control hardware: ISB Illuminator platform: Aerial 2 Test table architecture: Aerial 2 Illumination mode DUV Light source power level: 45.00 Watt Lens top tool connection Scanning energy sensor calibration Position of spot sensor on chuck 1 and 2: Layout 1 Z-Capture for low reflectivity wafer TIS Plate deformation correction FSM Flexibility package Field width optimized leveling Constrained fit No leveling throughput improvement on measure side Point-to-point LS machine matching Circuit dependent FEC Focus monitoring Extended LS area Air gauge No air gauge device present Reticle shape correction (Over rule) LS Focus node 3 Level sensor processing rack LS PEMM Config LS CPU Config: (3) CPU Base liner overlay high order intrafield Base liner focus high order intrafield Base liner focus control Log missed translation Recipe creator: Light Lot report data category: Enhanced diagnostic CDC Proximity matching MBDS Control Enhanced exposure 1 Data collection not covered by focus and overlay: Inform pro data collection Overlay data collection XML Lot report content level: Basic Enable to support SMASH XY mark type Mark type: ASML Mark Alignment laser configuration: 2 Color laser OADB Improved dynamic range Boards: ODB With ADB Athena narrow marks Twinscan Alignment sensor types: Athena narrow marks OM Athena focus improvement 1 Maximum alignment speed: Setting 2 AACR Processing rack Purging configuration 3 Ultra pure water flow controller (WICC) LCW Circuit set-ups Clean air configuration CT Miscellaneous rack Clean air temperature controls: Driver and ACC Purge hoods configuration: Compressed clean air and extremely clean dry air Metro frame type: Type 1 Inlet restriction for clean air: Inlet restriction at right side Reticle stage purged mini environment Gas control unit type: High Flow (HF) Readout location of pneumatic facility unit sensor: Machine Base Diagnostics System (MBDS) Lens circuit water flow: High Motor circuit water flows: Normal SPM Temperature correction for lens axis IFM Laser configuration: AOM Re-combo laser Position control rack configuration: Rack configuration type 3 Position control power rack configuration type 3: Stages power rack upto E-spec (5) Motion controllers Position and motion control rack Reticle stage short stroke X/Y11/Y12/Y21/Y22/Y11/Y11 amp: PADC 100 V / 16 A Wafer stage short stroke 1 XY1/ XY2/XY3 amp: PADC 100 V / 16 A Wafer stage short stroke 2 XY1/ XY2/XY3 amp: PADC 100 V / 16 A Reticle stage short stroke Z1/Z2/Z3 amp: Pass low current 8.5 A Wafer stage short stroke 1/2 Z1/Z2/Z3 amp: Pass low current 8.5 A Reticle stage long stroke Y11/Y12/Y21/Y22 amp: 450 V, 20 A PAAC Reticle balance mass 1/2 amp: 450 V, 20 A PAAC AT-pepD Wafer stage long stroke E/M X amp: 400 V, 16 A PAAC AT-D Wafer stage long stroke E/M Y1/Y2/CS amp: 400 V, 16 A PAAC AT-D Wafer stage balance mass 11/12/21/22 amp: 325 V, 14 A PAAC AT-C Pressure update rate: 2 Hz / 4 Hz Test stream PEP Image streaming Overhead reductions: LOR2 Extended zone alignment Intrafield higher order process correction SMASH Reuse capture information in stage alignment Wafer plane deviation check with focus monitoring Parameter indicates how long overlay data will be stored: Short Retention period Level sensor RY drift correction Fading control switch Automated lens heating calibration TIS Align set Image fading control Grid mapper 2D Grid correction Double TIS scan Symmetrical reticle alignment AST Offset correction: TIS LHFB/LOCO NEXZ-Tilt per exposure Projection lens: No off-axis slit Improved edge field leveling Enhanced throughput reticle alignment Adjustable wavelength Alignment report encryption Stage alignment filter Lot correction sequence: Type B Lens heating feedback ALE 1 Uses: Lens heating Overlay node: Level 0 E-Chuck flatness qualification test Layout version number: TIS Plate 1 and 2 on chuck 1/2 Wavelength / Energy sensor AM Controller hardware: SUCR Lithoguide: SAMOS Stray light test PUPIL Measurement FOCAL Measurement Leveling verification test ILIAS Sensor location: Chuck 2 ILIAS Sensor type chuck 2: Multiple scan grid SASO Robustness and fiber connectivity Extended X width masking range PDO Offset for EFL LS spot Patch strategy: Patch level Basic chuck dedication No RMCS client MDL Viewer: Site view ZERO Fiducial: ILIAS MK2 XT Machine architecture XT Architecture revision: Rev 1 2004 vintage.
ASML Twinscan XT 1250D ist ein Präzisions-Wafer-Stepper, der die Größe, Komplexität und Kosten der Mikrofertigung reduziert. Die Einheit besteht aus zwei synchron betriebenen Laserabtastsystemen, die auf einem gemeinsamen Rahmen montiert sind und von einer einzigen Steuereinrichtung angetrieben werden. Das System umfasst zwei Stufen mit unterschiedlichen Vergrößerungen, so dass das Gerät komplexe Wafer-Designs auf kleinen oder großen Funktionsgrößen und unterschiedlichen Prozesseinstellungen adressieren kann. ASML TWINSCAN XT:1250D ist mit einer einzigartigen Lichtquellentechnologie ausgestattet, die den Einsatz von bis zu drei Strahlen mit unterschiedlichen Beleuchtungsaufträgen ermöglicht. Die Strahlen sind sowohl mikrogewattelt als auch synchronisiert, um eine präzise Ausrichtung auf dem Wafer zu gewährleisten. Ein langer Belichtungsmodus ist verfügbar, um die Verarbeitung von kleineren Funktionen ohne Einbußen bei der Geschwindigkeit oder Genauigkeit zu ermöglichen. Die Maschine bietet zudem eine hochdynamische Fokusregelung, die es ermöglicht, optimale Prozessparameter unabhängig von der Chiphöhe oder Konstruktion beizubehalten. TWINSCAN XT 1250 D verwendet eine Reihe von bildgebenden Technologien, um die höchsten Qualitätsergebnisse zu gewährleisten. Dazu gehören nicht-invasive Bilderfassung und Multiple Quantum Well (MQW) Emissionskontrolle. Das Bilderfassungswerkzeug kann die subtile Struktur der Waferoberfläche schnell erkennen, so dass der Twinscan XT der Konkurrenz hinsichtlich der geometrischen Genauigkeit einen Schritt voraus ist. Das Gerät verfügt außerdem über eine Reihe von Optionen, die unterschiedlichen Anforderungen an die Halbleiterproduktion entsprechen. Dazu gehören Overlay-Fehlerüberwachung, optische Inspektionen oder dedizierte Stickstoffumgebungen. Darüber hinaus bietet ein optionales automatisiertes Werkzeug eine effiziente Integration und entfernt manuelle Aufgaben aus dem Produktionsprozess. Das macht den Twinscan XT zu einer hochproduktiven und kostengünstigen Einheit. Zusammenfassend ist ASML TWINSCAN XT 1250 D ein zweistufiger Wafer-Stepper, der eine präzise Ausrichtung komplexer Wafer-Designs in kleinen und großen Funktionsgrößen ermöglicht. Es nutzt fortschrittliche Bildgebungstechnologien und kann an unterschiedliche Produktionsanforderungen angepasst werden. Seine hohe Prozessflexibilität und automatisierte Werkzeugtechnik machen es zu einer zuverlässigen Wahl für die Herstellung von hochvolumigen Halbleitern.
Es liegen noch keine Bewertungen vor